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Terrain-based Mapping of Landslide Susceptibility Using a Geographical 
Information System: A Case Study

F. C. Dai
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Abstract: This paper deals with the development of a technique for mapping landslide susceptibility using a 
geographical information system (GIS), with particular reference to landslides on natural terrain. The method 
has been applied to Lantau Island, the largest outlying island within the territory of Hong Kong. Landslide 
susceptibility in the study area is related to a number of terrain variables, viz., lithology, slope gradient, slope 
aspect, elevation, land cover, and distance to drainage line. Multiple correspondence analysis (MCA) was carried 
out to generate the principal axes that are linear combinations of these terrain variables using occurrence data 
of landslides and terrain variables. A GIS is used to project the values of the principal axes, and subsequently 
to relate these principal axes to landslide susceptibility by logistic regression modeling. The spatial landslide 
susceptibility response in the study area can then be obtained by applying this logistic regression model to the 
study area. The results from this study indicate that such a GIS-based model is useful and suitable for the scale 
adopted in this study.

Key words: landslides, geographical information systems, multiple correspondence analysis, logistic regression, 
terrain analysis.

Résumé: Cet article traite du développement d’une technique de cartographie de la susceptibilité aux glissements 
utilisant un système d’information géographique (GIS), référant particulièrement aux glissements dans le 
terrain naturel. La méthode a  été  appliquée à Lantau Island, la plus grande île périphérique du territoire de 
Hong Kong. La susceptibilité au glissement dans la région étudiée est reliée à un certain nombre de variables 
de terrain telles que: la lithologie, le gradient de la pente, I'aspect de la pente, 1’élévation, la couverture du 
terrain, et la distance à la ligne de drainage. De multiples analyses de correspondances (MCA) ont été faites pour 
générer les principaux axes qui sont les combinaisons linéaires de ces variables de terrain au moyen des données 
d'occurrence de glissements et des variables de terrain. Un GIS est utilisé pour projeter les valeurs des principaux 
axes, et subséquemment pour mettre en relation ces principaux axes avec la susceptibilité aux glissements par 
modélisation de régression logistique. La réponse spatiale de la susceptibilité aux glissements dans la région  
étudiée peut alors être obtenue en appliquant le modèle de régression logistique à la région  étudiée. Les résultats 
de cette  étude indiquent qu’un tel modèle basé sur un GIS est utile et convient à 1’échelle adoptée dans cette 
étude.

Mots clés : glissements, systéme d’information géographique (GIS), analyse de correspondances multiples 
(MCA), régression logistique, analyse de terrain.

[Traduit par la Rédaction]

Introduction

Landslides in mountainous terrains often occur as a 
result of heavy rainfall, resulting in the loss of life and 
damage to the natural and (or) human environment. 
Sites that are prone to landslides should therefore be 
identified in advance to avoid such damage. In this 
regard, landslide-hazard mapping can provide much of 

the basic information essential for hazard mitigation 
through proper project planning and implementation.

Landslide hazard was defined by Varnes (1984) 
as the probability of occurrence of a potentially 
damaging landslide phenomenon within a specified 
period of time and within a given area. The factors 
which determine the landslide hazard of an area can be 
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divided into two groups: (i) the quasi-static variables, 
which contribute to landslide susceptibility, such as 
geology, slope gradient, slope aspect (i.e., orientation 
of slope face), elevation, geotechnical properties, and 
long-term drainage patterns; and (ii) the dynamic 
variables, which tend to trigger landslides in an area of 
given susceptibility, such as rainfall and earthquakes 
(Wu and Sidle 1995; Atkinson and Massari 1998). 
Obviously, the probability of a landslide depends on 
both the quasi-static and dynamic variables. However, 
the dynamic variables may change over a very short 
time span, and are thus very difficult to estimate. 
The spatial distribution of the quasi-static variables 
within a given area determines the spatial distribution 
of relative landslide susceptibility in that region 
(Carrara et al. 1995). Brabb (1984) defined landslide 
susceptibility as the tendency for a landslide to be 
generated in a specific area in the future. Up to now, 
most studies (e.g., Yin and Yan 1988; Carrara et al. 
1991, 1995; Niemann and Howes 1991; Atkinson 
and Massari 1998) have focused on the indirect 
determination of landslide susceptibility, rather than on 
landslide hazard as defined by Varnes. These studies 
have been largely based on the general principle that 
“the past and the present are the keys to the future,” i.e., 
future slope failures will more likely occur under those 
conditions which led to past and present landslides 
(Brabb 1984; Niemann and Howes 1991; Carrara et al. 
1995; Atkinson and Massari 1998).

A variety of techniques have been developed 
to assess landslide susceptibility. They can be 
grouped into the inventory, heuristic, statistical, and 
deterministic approaches (Soeters and Van Westen 
1996; Van Westen et al. 1997; Atkinson and Massari 
1998). Landslide inventory mapping is the most 
straightforward initial approach to any study of 
regional landslide hazard and is the basis of most 
susceptibility mapping techniques (Soeters and Van 
Westen 1996). Landslide inventory maps can be used 
as an elementary form of susceptibility map because 
they show the location of recorded landslides. They do 
not, however, identify areas that may be susceptible to 
landslides unless landslides have already occurred in 
such areas in the past (Evans et al. 1997; Atkinson and 
Massari 1998).

Heuristic models use expert opinions to estimate 
landslide potential from data on quasi-static variables 
only. They are based on the assumption that the 
relationships between landslide susceptibility and 
the quasi-static variables are known and are specified 
in the models. A set of variables are entered into the 
model to estimate landslide susceptibility (Anbalagan 
1992; Pachauri and Pant 1992; Niemann and Howes 
1991; Atkinson and Massari 1998). The limitations 
in the heuristic models are in the reproducibility of 
results and in the subjectivity in assigning weightings 
and ratings to the variables.

S ta t i s t ica l  models  involve  the  s ta t i s t ica l 

determination of the combinations of variables 
that have led to past landslides. Quantitative or 
semiquantitative estimates are then made for areas 
currently free of landslides, but where similar 
conditions exist. Both simple and multivariate 
statistical approaches have been used widely in such 
indirect mapping of landslide susceptibility (Yin and 
Yan 1988; Bernknopf et al. 1988; Gupta and Joshi 
1989; Siddle et al. 1991; Carrara et al. 1991, 1995; 
Wang and Unwin 1992; Naranjo et al. 1994; Atkinson 
and Massari 1998).

Deterministic approaches are based on slope 
stability analyses and the limit equilibrium method. 
They are only applicable when the ground conditions 
are reasonably uniform or known across the study 
area and the landslide types are known and relatively 
easy to analyze. The infinite slope stability model has 
been widely used to assess landslide susceptibility in 
small areas (Van Westen 1993; Terlien et al. 1995; Wu 
and Sidle 1995). The advantage of the deterministic 
models is that they permit quantitative factors 
of safety to be calculated, and the main problem 
with the deterministic models is the high degree of 
simplification that is usually necessary for their use.

Not all methods of landslide susceptibility mapping 
mentioned previously are equally applicable at 
different scales of analysis. Deterministic techniques 
require very detailed input data, which can only be 
collected for small areas because of the required level 
of effort (Evans et al. 1997). Statistical techniques are 
generally considered the most appropriate approach for 
landslide susceptibility mapping at scales of 1 : 20 000 
to 1 : 50 000, because at this scale it is possible to map 
out in detail the occurrence of past landslides and to 
collect sufficient information on the variables that are 
considered relevant to the occurrence of landslides 
(Naranjo et al. 1994).

Recently, the geographical information system 
(GIS) has become an important tool for landslide 
susceptibility mapping because it provides the various 
functions of handling, processing, analyzing, and 
reporting geospatial data. The overlay operation 
commonly applied within the GIS is useful in both 
the heuristic and the statistical approaches (Gupta 
and Joshi 1989; Carrara et al. 1991, 1995; Wang and 
Unwin 1992; Fernandez et al. 1999; Van Westen et 
al. 1997; Mark and Ellen 1995). The infinite slope 
stability model has also been incorporated into the 
GIS to calculate the spatial distribution of the factor of 
safety within a given region, based on the assumption 
that landslides generally occur along shallow failure 
surfaces (Terlien et al. 1995; Van Westen et al. 1997; 
Wu and Sidle 1995).

In this paper, Lantau Island, the largest outlying 
island of Hong Kong, is used as the study area, and 
a new statistical approach is presented for mapping 
landslide susceptibility on the island using a GIS. 
Landslide susceptibility in the study area is related to 
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the terrain variables, viz., lithology, slope gradient, 
slope aspect, elevation, land cover, and distance 
to drainage line. Multiple correspondence analysis 
(MCA) is used to generate the principal axes, which 
are linear combinations of these terrain variables, 
using occurrence data of landslides and their terrain 
variables. A GIS is carried out to project the values 
of the principal axes across the geographic space, and 
subsequently to relate these principal axes to landslide 
susceptibility by logistic regression modeling. This 
methodology has been developed by using the 
ArcView GIS software.

Description of the study area

Lantau Island, situated in the southwestern part of 
Hong Kong and with a total land area of about 140 km2 
, has been selected as a pilot study area (Figure 1). 
This selection was made based on (i) the presence of 
numerous landslides with a high spatial concentration; 
(ii) the availability of existing datasets such as
topographical maps, geological maps, land cover, and
spatial distribution of landslides; (iii) the existence
of steep terrain; and (iv) the presence of undeveloped
terrain that is most suitable for mapping of landslide
susceptibility using the GIS.

Lantau Island is virtually undeveloped and 
uninhabited, mainly because of the steep natural 
terrain. Land with slope angles >25° accounts for 
44% of the total land area. The ground generally rises 
at about 30° from sea level everywhere on the island 
(Brand 1994). Elevation ranges from sea level to over 
900 m above sea level and changes abruptly. The only 
flat land exists as occasional small coastal patches.

Figure 1. Location of the study area

The bedrock geology of the study area consists of 
volcanic rocks and a younger suite of granitic rocks. 

The volcanic rocks consist mainly of tuff and lava 
which are commonly banded. The former includes 
both the fine and coarse ash types. The bedrock 
materials, which are often heavily weathered in situ to 
form deep residual deposits, are sometimes overlain 
by deposits of younger superficial materials that are 
generally colluvial, alluvial, or littoral in character. The 
oldest rocks are the sandstones and siltstones. These 
sedimentary rocks occur as a small outcrops. Extensive 
deposits of colluvium probably blanketed the landscape 
as a result of numerous individual episodes of mass 
wasting and erosion during the Quaternary (Figure 2). 
Debris-flow deposits, as part of the colluvial deposits, 
usually form distinct lobes within stream courses or at 
the mouths of drainage networks. In recent times, the 
alluvium and raised-beach sediments were deposited 
under the combined influence of higher sea levels and 
fluctuating climatic conditions (Geotechnical Control 
Office 1988a, 1988b). The area is structurally affected 
by two sets of faults trending northeast-north-northeast 
and north-northwest-northwest.

The climate is subtropical and monsoonal, with 
mild, dry winters and hot, humid summers. Rainfall 
is high and occasionally intense during the rainstorms 
and typhoons. Given the steep natural terrain mantled 
with a layer of superficial deposits and the frequent 
intense rainfall, it is not surprising that landslides are a 
common occurrence.

The landslide data used in this analysis were 
derived from the Geotechnical Engineering Office 
(GEO) work in which landslide locations were 
digitized from 23 temporal sets of 1 : 20 000 to 1 : 
40 000 scale stereoscopic aerial photographs taken 
between 1945 and 1994 (King 1999; Evans 1998). 
The aerial photographs thus cover a period of 50 years 
and landslides up to 10 years old were visible before 
revegetation masked most scars. Recent landslides 
(Figure 3), observed on aerial photographs as a 
distinctive light tone (King 1999), were extracted 
from the natural terrain landslide database supplied by 
the GEO. Thus the recent landslide data used in this 
analysis cover a period of about 60 years of landslide 
activity. The location of each identified landslide 
crown was recorded on the 1 : 5000 scale base map, 
and the centerline of any debris trail was marked with 
a line. Each landslide was assigned an identification 
number. Multiple sequential photograph sets bracketed 
most landslides, allowing their minimum and 
maximum ages to be determined. The width of each 
landslide scar was classified as greater or less than 
20 m, and the ground slope angle across the landslide 
head, calculated from the distance between the steepest 
two adjacent contours on the 1 : 5000 scale map, was 
recorded. All these features have been digitized and 
saved in MicroStation design files (DGN) by the GEO 
and are available to the authors. Using the system 
proposed by Cruden and Varnes (1996), most of the 
landslides in the study area are probably debris slides, 
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debris flows, complex debris slide-flows, or composite 
debris slide-flow-falls (Evans et al. 1999). The GEO 
carried out a systematic study of the 56 natural terrain 
failures in three selected areas within the study area, 
and factual and diagnostic reports on the investigations 
and observations of the landslides were given by Wong 
et al. (1997) and Wong et al. (1998), respectively. Field 
inspections of these landslides have also been carried 
out by the authors (Dai et al. 1999). The distributions 
of source (i.e., the area above the surface of rupture) 
length, source width, and failure depth of initial 
failures are shown in Figure 4. For the landslides 
examined, the source lengths vary between 6 and 40 m, 
with a mean value of about 15 m. The source widths 
range from 3 to 20 m, with a mean value of about 
10 m. The landslides generally have a failure depth 
varying between 0.5 and 2 m, with a mean value of 
about 1.4 m. Site inspections indicated that the failures 
generally occurred along the colluvium-bedrock 
contact and most of the landslides started as slides and 
were quickly converted to flows due to the abundance 
of water and the steep terrain below the debris sources 
(Wong et al. 1998; Dai et al. 1999).

Methodology

The data needed for this study were derived from 
existing topographic maps, superficial and bedrock 
geological maps, and the spatial distribution of 
landslides. Contour lines and drainage lines were 
obtained from the 1 : 20 000 scale topographic maps. 
Superficial and bedrock geological data were obtained 
from 1 : 20 000 scale geological maps developed 
by the GEO, Hong Kong Geological Survey. Land-
cover data were derived from the Satellite Pour 
l’Observation de la Terra (SPOT) images using image-
processing techniques. All locational, geological, and 
geomorphologic features provided by the different 
thematic maps were digitized using the GIS software 
Arc/Info and then transferred to ArcView for the 
subsequent analyses.

Statistical methods were used to relate the 
occurrence of a landslide to the spatial distribution 
of terrain variables. Spatiotemporal variations 
of rainfall as an indispensable dynamic variable 
for triggering the occurrence of a landslide were 
excluded from this analysis. This consideration 
was based on the assumption that a record of up to 
60 year landslide incidences collected over many 
rainfall events might tend to smooth out and reduce 
the temporal and spatial rainfall effects, and that 
the recorded distribution of landslides, therefore, 
reflects the underlying susceptibility of the natural 
terrain, rather than the distribution of rainstorms. Six 
terrain variables including lithology, slope gradient, 
slope aspect, elevation, distance to drainage line, 
and land cover were considered to have a strong 

influence on landslide susceptibility in the study 
area. Lithology exerts a fundamental control on 
the geomorphology of a landscape. The nature and 
rate of the geomorphological processes, including 
landslides, are partially dependent on the lithology and 
weathering characteristics of the underlying materials. 
Slope gradient is an essential component of slope 
stability analysis. As slope gradient increases, the level 
of gravitation-induced shear stress in the colluvium or 
residual soils increases as well. Gentle hillslopes are 
expected to have a low frequency of landslides because 
of the generally lower shear stresses associated with 
low gradients. The aspect of a slope has the potential to 
influence its physical properties and its susceptibility 
to failure. The processes that may be operating include 
exposure to sunlight, drying winds, and, possibly, 
rainfall (Evans et al. 1999). Figure 3 shows that the 
topographical variable of elevation might be associated 
with landslides. Intense gully erosion occurs in the 
study area, and field checking indicates that the 
proximity to drainage line (in the form of a natural 
gully channel) may be an important factor controlling 
slope failure. Land cover, especially of a woody type 
with strong and large root systems, helps to improve 
the stability of slopes by providing both hydrological 
and mechanical effects that generally are beneficial 
to stability (Gray and Leiser 1982; Greenway 1987). 
Franks (1998) examined natural terrain landslides on 
North Lantau Island and concluded that a sparsely 
vegetated slope is most susceptible to failure. 
Elevation data were obtained from the digital elevation 
model (DEM) derived from the 1 : 20 000 scale digital 
contour lines of the area. Two data layers were derived 
from these elevation data, namely, slope aspect and 
slope gradient. The data layer containing drainage 
lines was converted to a grid in which the cell values 
indicate the distance to the drainage line.

The vector datasets were then rasterized into 20 m 
x 20 m grid cells for subsequent analyses. This size of 
the grid cells was based on the scale of the topographic 
map used and the size of the landslides; most of 
which were less than 20 m in width. Each variable 
was divided into several categories (Table 1), and the 
univariate statistical method was adopted to quantify 
the relationship between landslide frequency and the 
categories of each variable. Although the conventional 
statistical method could give a satisfactory combination 
of variables, it has a serious drawback because it 
uses the assumption of conditional independence 
(Van Westen et al. 1997). This means that different 
variable maps are independent with respect to 
landslide susceptibility. This assumption is, however, 
largely invalid, leading to unrealistic susceptibility 
values. This drawback can be avoided with the use of 
multiple correspondence analysis, which can detect the 
uncorrelated principal axes that are linear combinations 
of these terrain variables. Logistic regression was 
conducted to obtain a predictive model, and this model 
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Figure 2. Simplified geological map (data provided by the Geotechnical Engineering Office, Hong Kong)

Figure 3. Map showing topographical features and locations of landslides (landslide data provided by the 
Geotechnical Engineering Office, Hong Kong)
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was then used to produce a relative susceptibility 
map within the GIS environment. The main steps in 
the procedure are shown in Figure 5. The use of this 
method has the following advantages: (i) the results 
are reproducible because the mathematical operations 
are defined; (ii) the results are easy to interpret because 
each parameter can be evaluated separately; and (iii) 
the assumption of conditional independence usually 
adopted in the conventional statistical model, which 
generally deviates from reality, can be avoided.

Terrain analysis and landslide 
distribution

Descriptive statistics for the categorized variables 
were compiled to investigate the relationship between 
the occurrence of landslides in the past and the terrain 
variables within the study area. Such a univariate 
analysis can be used to validate or verify expectations 
regarding the role of individual variables in the 
occurrence of landslides. The digital map of the 
distribution of recent landslides was overlain on the 
aforementioned raster data layers of terrain variables 
to automatically extract the categories of terrain 
variables for the landslide sites using the GIS, and the 
descriptive univariate statistical relations were then 
produced.

Lithology

The landslide frequency in each lithological category 
is shown in Figure 6a. There are three geological 
categories with relatively high landslide frequency: 
trachydacite, dacite, and rhyolite lava (TDR); 
sedimentary rock (SR); and metasedimentary rock 
(MSR). The TDR category had the highest frequency. 
As noted previously, the available evidence tends to 
suggest that a thin surficial layer of colluvium may 
have played an important role in the majority of 
landslides. However, colluvial deposits that are less 
than approximately 2 m thick are not identified on the 
1 : 20 000 scale geological maps (Evans et al. 1999). 
Hence landslides in thin colluvium might have been 
recorded as occurring within the underlying geological 
group. This is not considered by Evans et al. (1997) 
to be a serious problem because the properties of the 
thin colluvial layers depend on the bedrock geology 
from which they are derived. Immediately downslope 
from geological group boundaries, unmapped colluvial 
deposits may have been partly derived from the upper 
geological group rather than from the underlying unit. 
However, the proportion of landslides affected by this 
situation will be very small (Evans et al. 1999).

Structural geology information is also available 
from the digital geological maps. However, qualitative 
examination of spatial distributions suggests that the 
correlation between landslides and mapped linear 
structural features at the 1 : 20 000 scale is not good, 

and the structural information is thus excluded from 
this study.

Slope gradient

Examination of the distribution of landslide frequency 
with the corresponding slope gradient categories, 
measured at the 1 : 20 000 scale, shows an increase 
in the frequency of landslides with an increase in the 
slope gradient until the maximum frequency is reached 
in the 35-40° category, followed by a gradual decrease 
in the ≥40° category (Figure 6b). This is because the 
slope-forming material of the terrain with a gradient 
exceeding 40° is composed of weathered rock that is 
not overlain by colluvium and whose strength is much 
higher. In contrast, the moderately steep terrain is often 
covered by a thin layer of colluvium, which is more 
susceptible to rainfall-induced failure.

Table 1. Terrain variables and categories used for 
analysis
Variable Categories 
Lithology 1, superficial deposits (Q);

2, sedimentary rock (SR);
3, metasedimentary rock (MSR);
4, intrusive rock (IR); 
5, minor intrusive rock (MIR);
6, ash tuff, tuffite, tuff breccia, and 
eutaxite (BCT);
7, trachydacite, dacite, and rhyolite 
lava (TDR); 
8, volcaniclastic sedimentary rock 
(VSR) 

Slope gradient 
(°) 

1,	0-15; 2, 15-20; 3, 20-25; 4, 25-30;
5, 30-35; 6, 35-40; 7, ≥40 

Slope aspect 1,	flat; 2, north; 3, northeast; 4, east;
5, southeast; 6, south; 7, southwest; 8, 
west; 9, northwest 

Elevation (m) 1,	0-100; 2, 100-200; 3, 200-300;
4, 300-400; 5, 400-500; 6, 500-600; 7, 
>600

Land cover 1,	developed land (DL); 2, forested land 
(FL); 3, shrub - forested land (SFL); 4, 
densely grassed land (DGL); 5, moder
ately grassed land (MGL); 6, sparsely 
grassed land (SGL) 

Distance to 
drainage line 
(m) 

1,	<50; 2, 50-100; 3, 100-150; 
4, 150-200; 5, 200-250; 6, 250-300; 
7, >300 

Slope aspect

To investigate the relative relationship between the 
occurrence of landslides and slope aspect, the DEM 
was used to calculate the aspect of a slope within 
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7

the study area. The distribution of aspect among the 
mapped landslides is shown in Figure 6c, which shows 
that landslides with south-facing aspects are relatively 
more common, indicating that landslides in natural 
terrain are more common on south-facing slopes.

Elevation

The relationship between landslide frequency 
and elevation is shown in Figure 6d. At very high 
elevations there are mountain summits that usually 
consist of weathered rocks whose shear strength is 
very high. At intermediate elevations, however, slopes 
tend to be covered by a thin layer of colluvium, which 
is more prone to landsliding. At very low elevations, 
the landslide risk is low because the terrain itself is 

gentle and is covered with a thick layer of colluvium 
and (or) residual soils, and a higher perched water 
table will be required to initiate slope failure.

Land cover

The correlation between land cover and landslide 
frequency is shown in Figure 6e, which shows that 
the landslide frequency is relatively low on “sparsely 
grassed land” (SGL) and highest on “densely grassed 
land” (DGL). This is because sparsely grassed land is 
composed of weathered rock not overlain by colluvium 
or residual soil. In contrast, the densely grassed land is 
often covered by a thin layer of colluvium underlain by 
weathered bedrock which is susceptible to landslides. 
It should be noted, however, that land-cover data are 
considered to be estimates only, because of increased 
development of coastal flat-lying lands with time and 
possible temporal change in land-cover categories over 
the past several decades.

Distance to drainage line

The relationship between landslide frequency and 
distance to drainage line is shown in Figure 6f, 
which shows that landslide frequency decreases as 
the distance to drainage line increases. This can be 
attributed to the fact that the elevated groundwater 
level during storms and terrain modification caused by 
gully erosion may influence the initiation of landslides.

Mapping of landslide susceptibility

Logist ic regression was conducted using the 
Statistical Analysis System (SAS), a software 
package for the manipulation and statistical analysis 
of data (Everitt and Der 1996), to predict landslide 
susceptibility as a function of terrain variables for 
20 m x 20 m cells. However, the terrain variables 
used for describing landslide susceptibility were 
intrinsically interdependent. Thus a substantial part 
of the information for one or more of these variables 
may be redundant and the conclusions drawn from the 
regression analysis may be ambiguous (Glantz and 
Slinker 1990). Thus, multiple correspondence analysis 
(Greenacre 1984) was used to overcome the problem 
of the unavoidable intercorrelatedness among these 
data by extracting the principal axes. These principal 
axes contain the same information as the original 
parameters and are defined in such a way that they 
are mutually uncorrelated and there is no redundant 
information between them.

Multiple correspondence analysis (MCA)

Correspondence analysis (CA) is a weighted principal 
component analysis of simple two-way and multi-way 
tables containing some measures of correspondence 
between the rows and columns. It is one of the 

Figure 4. Histograms showing characteristics of initial 
landslides: (a) source length, (b) source width, and (c) 
failure depth (data from Wong et al. 1997)
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eigenvector-based techniques that assume a unimodal, 
rather than linear relationship among the variables. 
Correspondence analysis can be classified into simple 
and multiple correspondence analyses (MCA). Simple 
correspondence analysis is carried out on an indicator 
matrix with cases as rows and categories of variables 
as columns. In contrast, the MCA is not performed 
on an indicator matrix, which potentially may be very 
large if there are many cases, but rather on the inner 
product of this matrix, called the Burt table. A Burt 
table is a partitioned symmetric matrix containing all 
pairs of cross-tabulations among a set of categorical 
variables. Each diagonal partition is a diagonal matrix 
containing marginal frequencies (a cross-tabulation of 
a variable with itself). Each off-diagonal partition is 
an ordinary contingency table. Each contingency table 
above the diagonal has a transposed counterpart below 
the diagonal (SAS Institute Inc. 1990). The results 
of the MCA performed on the Burt table provide 
information which is similar in nature to that produced 
by the factor analysis techniques, and they allow 
exploration of the structure of categorical variables 
in the table. The principal axes are extracted so as 
to give the maximum variance between variables. 
Thus, the extraction of principal axes is similar to the 
extraction of principal components in a factor analysis. 

In essence, correspondence analysis creates a series 
of orthogonal axes to identify trends that explain the 
data variation, with each subsequent axis explaining 
a decreasing amount of the variation (Benzecri 
1992). A comprehensive description of this method, 
computational details, and its applications is given in 
the classic texts by Greenacre (1984) and Benzecri 
(1992).

As noted previously,  the terrain variables 
considered relevant to the occurrence of landslides 
have been extracted for all recent landslides. This 
result from the overlays is then transferred to a 
matrix of terrain variables. The same categorization 
scheme as that used previously to study the relation 
of landslide frequency with the categories of terrain 
variables is adopted herein for consistency. However, 
for the terrain variables of land cover and slope aspect, 
the forested land and shrub-forested land categories 
and the north-facing and northwest-facing categories 
have been incorporated into single categories because 
they have nearly the same landslide frequencies. An 
indicator table of terrain variables for the occurrence 
of landslides is obtained. In this table, there are 1975 
landslide cases, and at the ith case (i = 1, 2, ..., m) 
we have Ail, Ai2, ..., Aik, which represent the numeric 
values of the k terrain variables. Because Aij represents 

Figure 5. Procedures for mapping of landslide susceptibility adopted in this study
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a category of the ith landslide case in the data layer of 
the jth terrain variable, the numeric value Aij cannot be 
used directly in the MCA. A commonly used technique 
is to generate a binary variable for each terrain variable 
category to indicate the presence or absence of that 
category at each landslide case. Suppose that we have 
l categories in the jth terrain variable (j = 1, 2, ..., k).
Then, at the ith case we generate l binary variables for
the jth terrain variable, Bij1, Bij2, ... Bijl, where one of
Bij1, Bij2, ..., Bijl is equal to 1 and all the others are equal
to 0. This procedure is repeated for all the other terrain
variables, and a binary indicator table is obtained. The
Burt table of this binary indicator table is then created
by each binary variable being tabulated against itself
and against all other binary variables.

Multiple correspondence analysis is then conducted 
on the indicator table using SAS (Everitt and Der 
1996). The SAS has the function of creating the 
Burt table from an indicator table. Figure 7 shows 
the percentages of the total inertias for individual 
principal axes. The inertia is analogous to the variance 
in principal component analysis. The percentage of 
principal inertia for the first axis is very low. This is 
not unique to this analysis and is in agreement with 
the work of Micheloud (1997), which indicates that in 
the MCA the percentage of inertia for the first axis is 
very low. It is common to keep the first few principal 
axes which account for most of the total variability for 
subsequent analysis. One limitation of this approach 
is that the MCA only focuses on the variability 

Figure 6. Relationship of landslide  frequency (number of landslides per km2) with (a) lithology, (b) slope 
gradient, (c) slope aspect, (d) elevation, (e) land cover, and (f) distance to drainage line (symbols as in Table 1)
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in the inputs (here, terrain variables) and ignores 
the relationship with the output(s) (here, landslide 
susceptibility). A low-order principal axis which only 
accounts for a small proportion of the total variability 
in the inputs may be significant in modeling an output 
(Martin and Morris 1999). To avoid this problem in 
the analysis, all 34 principal axes obtained from the 
MCA are used for the subsequent logistic regression 
analysis.

Based on the coefficients obtained from the 
MCA, calculation of all principal axes from a linear 
combination of the original terrain variables is readily 
implemented in the ArcView GIS. Each principal axis 
constitutes a grid layer in the GIS. All these axis layers 
together define a new uncorrelated space.

Logistic regression

Landslide susceptibility is to be predicted using 

logistic regression, one of a family of generalized 
linear models that are well suited to analyzing a 
presence-absence dependent variable. Logistic 
regression uses a linear combination of independent 
variables to explain the variance in a dependent 
variable having only two states. Here the dependent 
variable was the absence or presence of a landslide, 
and the independent variables were the principal 
axes. Each sample can be represented through a 
binary variable Y, which indicates whether a landslide 
occurred (Y = 1) or did not occur (Y = 0), and n 
independent variables (i.e., principal axes), X1, X2, ... 
Xn, which include all the principal axes. The task is 
to use the available m samples (X11, X12, ..., X1n; Y1), 
..., (Xm1, Xm2, ..., Xmn; Ym) to express the probability of 
landslide occurrence P(Y = 1) as a function of X1, X2, 
..., Xn. Since Y is an indicator variable, it follows that, 
for any given X1, X2, ..., Xn, the probability that Y = 1 

Figure 7. Percentage of the total inertias for individual principal axes

Figure 8. Histogram of predicted lanslide susceptibility
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is also the expected value of Y given X1, X2, ..., Xn, i.e., 
P(Y = 1), is the regression against X1, X2, ..., Xn. The 
fact that the regression of Y against X1, X2, ..., Xn has 
the meaning of probability implies that P(Y = 1) must 
lie between 0 and 1. This constraint can be obtained by 
replacing the probability that Y = 1 with the odds that 
Y = 1 (e.g., Menard 1995):

Odds (Y = 1) =		 P(Y = 1) (1)		 1 -P(Y =1)

The natural logarithm of the odds, called the logit 
of Y, produces a variable that varies monotonically 
from negative infinity to positive infinity. The logit 
of Y, logit(Y), becomes negative and increasingly 
large in absolute value as the odds decrease from 1 
to 0 and becomes increasingly large in the positive 
direction as the odds increase from 1 to infinity. If we 
use the natural logarithm of the odds that Y = 1 as the 
dependent variable, we no longer face the problem that 
the estimated probability may exceed the maximum 
or minimum possible values for the probability. 
The equation for the dependent variable and the 
independent variables then becomes (e.g., Menard 
1995)

logit(Y) = α + β1X1 + ... + βnXn	 (2)

where βi (i = 1,..., n) is the coefficient estimated from 
the sample data, and α is the intercept.

We can convert logit(Y) back to the odds and then 
convert the odds back to P(Y = 1). This produces the 
following expression for the probability of landslide 
occurrence in terms of the variables X1, ..., Xn:

P(Y = 1) =	 	
1	 (3)

		 1 + e

In a strict sense, however, P(Y = 1) is not a 
probability because the dynamic variables, such as 
rainfall, triggering landslides are not accounted for. 
It may be more appropriate to term it hereafter as 
landslide susceptibility based on the terrain variables.

The parameters of the logistic regression model 
are estimated using the maximum-likelihood method. 
In other words, those coefficients which make the 
observed results most “likely” are selected. Since 
the relationship between the independent predictor 
variables, i.e., the principal axes, and the landslide 
susceptibility is nonlinear in the logistic regression 
model, an iterative algorithm is necessary for 

Figure 9. Map showing relative landslide susceptibility

-(α+β1X1+...+βnXn)
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parameter estimation.
Two sets of sample data representing both absence 

and presence of landslide must be provided to fit the 
logistic regression model. The way in which these 
data are obtained will affect both the nature of the 
regression relation and the nature and accuracy of the 
resulting estimates (Atkinson and Massari 1998). In 
this analysis, the dataset of landslide inventory is an 
indispensable data source representative of samples 
of landslide presence. All grid cells of the 1975 
landslides studied were thus used to obtain the values 
of the principal axes. To eliminate bias in the sampling 
process, an equal number of cells were chosen from 
the no-landslide area as samples representing the 
absence of a landslide. These grid cells were obtained 
using systematic sampling, i.e., a spatially uniform 
sampling scheme, but excluding a 40 m buffer zone 
for all landslides. For these cells, the values of all 
principal axes were extracted automatically from the 
existing data layers of the principal axes. Each sample 
cell has its respective binary value on the presence or 
absence of landslide coded as 1 or 0, respectively, as 
well as information on principal axes. The training 
data were then used to input to the logistic regression 
algorithm within SAS to obtain the coefficients for the 
logistic regression model.

All the predictor variables, i.e., the principal axes, 
are then subjected to a forward stepwise procedure 
to generate a more parsimonious logistic regression 
model. At each step, principal axes are evaluated for 
entry into the model one by one if they contribute 
sufficiently to the regression equation. All the principal 
axes for which the attained statistical significance 
(p) is smaller than 0.1 were entered into the model,
following the procedure available in SAS. The model
developed was checked for plausibility, and variables
were then entered into, or removed from, the model
to improve its goodness of fit. The significance of the
logistic model was ascertained from the likelihood
ratio statistics by comparing the deviance for the model
of interest against the deviance for the model fitted
only to the intercept (Hosmer and Lemeshow 1989).
Classification tables were also used for assessing the
goodness of fit (Hosmer and Lemeshow 1989). Lastly,
the coefficients for the logistic regression are obtained.

Figure 8 is a histogram of the predicted landslide 
susceptibility for the samples used in this analysis. 
Theoretically, if we have a model that successfully 
distinguishes the two groups based on a classification 
cutoff value of 0.5, the cases for which a landslide has 
occurred should be to the right of 0.5, and the cases 
for which a landslide has not occurred should be to the 
left of 0.5. The more the two groups cluster at their 
respective ends of the plot, the better the model is at 
predicting landslide susceptibility. Figure 8 shows that 
the model produced a concordance rate of 77.1 %, and 
82.5% of the actual landslides were correctly classified 
with the use of 0.5 as a classification cutoff value. By 

examining the histogram of predicted susceptibilities 
in Figure 8, one can determine the classification rule 
that should be adopted when applying the model to 
each cell in the study area.

Susceptibility mapping

The logistic regression model obtained above can 
be readily implemented in a GIS. The model is 
implemented by building a single formula where each 
coefficient multiplies its related predictor principal 
axes. The result of the calculations is then subjected 
to inverse logistic transformation to obtain the 
susceptibility values between 0 and 1 at every cell 
of the GIS grid. The estimated susceptibilities thus 
obtained from the regression model are converted to 
the range between 0 and 1.

A general description of the spatial landslide 
susceptibility on the scale adopted in this analysis is 
to classify the range of the landslide susceptibility 
into several relative descriptive categories, such as 
high, moderate, and low. This is also convenient for 
the presentation of landslide susceptibility maps. 
In this analysis, spatial landslide susceptibility is 
generalized into four categories: (i) very low (0-0.2), 
(ii) low (0.2-0.35), (iii) moderate (0.35-0.55), and
(iv) high (>0.55). These ranges of the individual
categories were derived by moving the cutoff point
by an increment of 0.05 along the [0, 1] susceptibility
interval to allow estimates of optimal cutoff points
to be made by identifying the values for which most
successes are correctly classified, while minimizing
the number of failures, based on the histogram of the
estimated landslide susceptibility shown in Figure 8.
The final relative landslide susceptibility map is shown
in Figure 9.

Figure 9 shows that those zones classified as having 
“very low” susceptibility, which account for 38.5% 
of the study area, are satisfactorily distributed in 
clusters on the coastal lowland and on the top of high 
mountains which are characterized by relatively gentle 
gradients. All these sites are highly stable and are not 
favorable to the development of landslides. Zones of 
“low” susceptibility, covering 17.5% of the total land, 
are relatively dispersed in their spatial distribution, and 
hence the chance for landslides to develop is small. 
Zones of “moderate” susceptibility cover 13.7% of the 
total area, and are mainly found in lower sections of 
slopes and ridges. The “high” susceptibility category 
occupies 30.3% of the study area and exhibits a 
strongly clustered pattern of spatial distribution. This 
category is characterized by relatively high elevations 
and steeper terrain. Most of the locations of the 
identified landslides actually fall within this category. 
Thus, it appears that the results of this GIS-based 
statistical modeling are generally satisfactory.

Discrepancies in the classifications of landslides 
between the predictive and the actual landslides can 
be attributed to a variety of factors. The possible 
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problem with the model may have been due to the 
limitations and assumptions inherent in the statistical 
techniques. The nature and details of the landslides 
are not necessarily well represented by the model. 
There may be a potential bias in the calculation of the 
principal axes because only those data on landslide 
occurrence were used in the MCA. This can be 
overcome by adding the sample data representing the 
absence of landslides. Data quality and resolution may 
also be factors contributing to these discrepancies. 
The 1 : 20 000 scale topographic maps may be too 
coarse to adequately portray local microtopographic 
features at landslide sites. The 1 : 20 000 scale 
geological maps used in this study cannot fully reflect 
the distribution of colluvium or residual soils which 
are of critical significance to landslide occurrence. 
A major limitation with the model is that we cannot 
evaluate the contribution of each terrain variable to 
the model because the principal axes were used as 
the independent variables in the logistic regression. 
The principal advantage of the present method 
over conventional statistical methods is that it can 
overcome problems related to the assumption of 
conditional independence in conventional statistical 
methods. Compared to conventional geotechnical 
ground investigations for the assessment of landslide 
hazard and slope stability, this GIS-based modeling 
of landslide susceptibility can be carried out quite 
rapidly over large areas to provide an early impression 
of slope processes, landforms, and stability. Although 
the susceptibility classifications are only relative and 
provide no absolute indication of the potential for 
failure, they represent a cost-effective means of rapid 
terrain appraisal, thereby providing useful input to the 
assessment of slope stability for engineering projects 
in mountainous areas during the early phases of project 
planning and decision-making. The zones classified as 
having “low” and “very low” susceptibility should, of 
course, be chosen for sites for engineering planning 
based on the condition that other factors are suitable 
for development.

Conclusions

GIS tools have contributed to the evolution of 
innovative landslide susceptibility maps. In particular, 
they can facilitate rapid trial and error procedures for 
the final product. The work reported herein would 
be virtually impossible without the aid of GIS. The 
procedures developed in this study consist of (i) 
developing a data base of landslides and terrain 
variables, (ii) relating the landslide data base to a set 
of terrain variables through a GIS, (iii) using multiple 
correspondence analysis to extract the principal 
axes, (iv) using the principal axes to formulate the 
logistic regression model, and (v) mapping the spatial 
landslide susceptibility from the logistic regression 

model by means of a GIS. The results obtained in this 
study indicate that this model is useful and suitable for 
the scale adopted in the study.
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